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ABSTRACT

The evolution of tweed microstructure upon aging a

53Cu45Mn2A1 alloy was studied in the transmission electron

microscope (TEM). Characteristic (110) tweed contrast

develops after the alloy is aged for 4 hours or longer at

400 C, which apparently is just within the miscibility gap,

and is then cooled to room temperature. The microstructure

evolved is proposed to consist of a small proportion of Mn-

rich regions in a Cu-rich matrix. As the phase separation

proceeds, the Neel temperature and the FCC-to-FCT transition

temperature both rise within these Mn-rich domains, and as a

result they begin to display incipient lattice instabili-

ties when observed at room temperature. This takes the form

of a "flickering" effect in the TEM image. The flickering

consists of consistent and repetitive contrast variations at

specific locations in the microstructure. The significance

of these microstructural features to damping is discussed.
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I. INTRODUCTION

A. GENERAL

The reduction of noise and vibration is of critical

interest to the U. S. Navy. This is because noise and

vibration can lead to several undesirable effects,

including:

* Potential hearing loss and/or impaired performance
of personnel.

* Reduged performance oV misalignment of critical elec-
tronics and other equipment.

* Shortened fatigue life of equipment.

* Increased detection ranges of surface ships and
submarines.

Three possible practical approaches for noise and vibra-

tion control are:

1. Isolation - the reduction of energy transmission
between the sources (moving parts) and the surface
that can radiate the energy.

2. Structural dissipation - attenuation of the energy
somewhere in the structure by the use of isolation
pads.

3. Material dissipation - components are made of alloys
or composites wnich have high damping capacity.

The first two of these, isolation and structural dis-

sipation, are the approaches generally used in current

engineering practice. Although these methods are effective,

they have their drawbacks (e.g., the increased weight and

space necessary to accomodate the materials used for

isolation or dissipation).

Therefore, this thesis is part of an ongoing research

program at the Naval Postgraduate School to determine the *

damping characteristics of existing commercial alloys and to

discover the microstructural mechanisms of damping. An

understanding of these mechanisms should contribute to an

ability to select alloys with the potential for high

damping, or even to design of alloys from their basic

properties.
1
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B. BACKGROUND

Any system possessing mass and elasticity is capable of

vibration. Damping is the property of a material which

describes how rapidly these vibrations decay once excited

within the material. All materials exhibit some degree of

vibrational damping, but most structural alloys exhibit poor

damping capacity at the amplitude of stress associated with

vibration and noise emission. The specific damping capacity

(SDC) of most structural materials is quite low (i.e. less

than 1%). A summary of SDC, yield strength and density is

provided in Table 1 for selected structural materials and 6

some high damping alloys. Gray cast iron, which has been

considered an unusually effective energy absorbing struc-

tural metallic material, actually has a SDC value in the

range of 5% to 10%. However, several high damping "quiet"

alloys have damping capacities of 25% to 50%.

Although several alloy systems have been shown to ,

exhibit high damping capacity, each of these alloy systems

has demonstrated some drawback. For example:

* High cost due to the limited production of required
base materials for alloy production.

* Poor resistance to corrosion in a marine environment.

* Aging effects (reducqd. damping with time) at the
desired operating conditions.

* Difficulty in machining or casting the alloy.

* Difficulty in preservinq the damping capacity while
forming tne required product.

Consequently, research is being done to design alloys that

eliminate some or all of these drawbacks.

When considering the mechanisms of damping in materials,

the basic idea is that in order to have damping, some

features in the microstructure have to move. Some examples

of moveable features are:

2



TABLE 1
DAMPING CHARACTERISTICS OF SELECTED METALS

AT ROOM TEMPERATURE [Ref. 1: p. 203]
Metal SDC Yield $trgngth Density

(%) (l0-apsi) (=m cm.j-

Magnesium (wrought) 49 26 1.74
Cu-Mn alloys (Incramute, 40 45 7.5

Sonoston)

Ni-Ti alloy (Nitinol) 40 25 6.45
Fe-Cr-Al alloy (Silentalloy) 40 40 7.4

High-C gray iron 19 25 7.7
Nickel (pure) 18 9 8.9
Iron (pure) 16 10 7.86
Martensitic stainless 8 85 7.7

steel

Gray cast iron 6 25 7.8
SAP (aluminum powder) 5 20 2.55
Low-carbon steel 4 50 7.86
Ferritic stainless steel 3 45 7.75
Malleable, modular cast 2 50 7.8

irons
Medium-carbon steels 1 60 7.86
Austenitic stainless steel 1 35 7.8
1100 Aluminum 0.3 5 2.71
Aluminum alloy 2024-T4 <0.2 47 2.77
Nickel-based superalloys <0.2 Range 8.5

Titanium alloys <0.2 Range 4.5
Brasses, bronzes <0.2 Range 8.5

31
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* Atoms (e,g., stress induced movement of carbon or
nitrogen in iron).

* Point Defects.

* Dislocations.

* Grain Boundaries.

* Twin boundaries.

* Magnetic domain boundaries.

* Interphase boundaries.

While all of these features provide some damping, some are

better than others. Twin boundaries, magnetic domain boun-

daries and interphase boundaries seem to provide the best

damping mechanisms. Certain variables of the imposed

vibration, such as freque ,cy, strain amplitude and number of

cycles, can also influence the degree of damping [Ref. 2].

1. MetallurQy of the Cu-Mn Alloy System

The present reseach was focused on the characteris-

tics of a specific high damping alloy, 53Cu-45Mn-2AI (weight

%). It was previously shown [Ref. 3] that this alloy devel-

ops a "tweed" microstructure after aging. However, the

process of microstructural evolution of the tweed and the

exact mechanisms of damping in this alloy have not been

determined. It was to these questions that the present

research was addressed.

A brief review of some of the features of the Cu-Mn

alloy system, as well as the possible origins of a tweed

type microstructure,will be presented in order to introduce

the potential microstuctural damping mechanisms.

The Cu-Mn binary alloy system displays a broad

single-phase region at elevated temperature [Ref. 4].

This FCC gamma (-y) phase is shown in the Cu-Mn phase dia-

gram, Figure 1.1. When an FCC -y-phase alloy is rapidly

cooled, the alloy first undergoes an antiferromagnetic

ordering [Refs. 5,6,7,8,9,10]. The initiation of antiferro-

magnetism is associated with a concentration dependent

temperature, the Neel temperature (TN), which increases with

4
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Figure 1.1 Phase Diagram of Copper-Manganese

Binary System.

increasing Mn content and has been carefully determined by

previous workers [Refs. 6,10]. At this critical temperature

the atomic magnetic dipoles of adjacent Mn atoms become

aligned in an antiparallel manner. Domains are formed with 6

mismatcnes of the antiferromagnetic alignment at the domain

boundaries [Ref. 11: p. 473]. This arrangement results in

zero net magnetism. Figure 1.2 shows the relationship

between TN and Mn content. 6

Closely coincident with the antiferromagnetic order-

ing, the alloy transforms from the FCC I-phase to a metas-

table twinned FCT structure [Refs. 6,12,13,14,15] which may

be regarded as quasi-martensitic (that is, a shear transfor-

mation with very low lattice strain). The temperature of

the FCC-to-FCT transition for solution heat treated and

quenched alloys, which may be called the martensite start

(Ms) temperature, varies appoximately linearly with Mn
5
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Figure 1.2 Neel Temperature (TN) vs. Mn
Concentration in As-quenched
Alloys [Ref. 16).

content. The Ms temperature increases with increasing Mn

content (Refs. 5,6,12], as is shown on Figure 1.3.

As a result of the composition-dependence of TN and

Ms, the transition temperature for the FCC-to-FCT transfor-

mation falls below room temperature when the Mn content is

reduced to about 82% Mn. Therefore, quenched alloys of <82%

Mn, which have been solution heat treated in the 7-single

6
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Figure 1.3 The FCC-to-FCT Transformation
in Cu-Mn Alloys [Ref. 12].

phase region, remain as FCC at room temperature. For alloys

>82% Mn, the FCC ,y-phase transforms to the twinned FCT

structure.

Another important characteristic of Cu-Mn alloys is

the existence of a miscibility gap, although there is some

uncertainty about its exact location [Refs. 16,17,18].

This miscibility gap is shown on Figure 1.4, along with the

plot of the TN and Ms temperatures. When held within the 6

7
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miscibility gap, an alloy separates into Mn-rich and Cu-

rich regions [Refs. 5,19,21,22]. Although equilibrium a-Mn

precipitates will ultimately form, the effects of interest

occur at relatively early aging times where a fine-scale

composition modulation initially develops. This apparently

creates localized Mn-rich regions wherein antiferromagnetic

ordering and quasi-martensite formation may occur when

quenched to room temperature. These transitions can occur

because TN and the Ms temperature are effectively raised

within these Mn-rich regions, so that quenching to room

temperature may give rise to the FCC-to-FCT transformation.

Thus, alloys between 50% and 82% Mn may transform from FCC-

to-FCT upon quenching to room temperature after aging for

various times between 300 C to 600 C [Refs. 20,21,23]. This

is explained by the existence of the miscibility gap which

leads to decomposition of the FCC phase upon aging.

Several workers [Refs. 3,20] have concluded, from

x-ray investigation, that the FCC-to-FCT transformation does

not occur for alloys of <50 at. % (approximately 46.4 wt. %)

Mn. For example, Reskusich and Perkins [Ref. 3] demons-

trated that the 53Cu-45Mn-2AI alloy lacked indication of the

FCC-to-FCT transformation, but presented a tweed appearance

as damping increased to a maximum and then decreased.

2. Damping Mechanisms in Cu-Mn alloys

In unaged Mn rich Cu-Mn alloys, a twinned FCT micro-

structure is believed to be the source of damping [Refs.

21,23,24,25]. Hedley [Ref. 21] stated that the energy

absorption takes place by at least two mechanisms:

1. A frictional term due to the microtwin boundary
moving though the lattice.

2. The energy involved in the reversible rotation of
magnetic moments assosciated with each Mn ion.

There are at least two other mechanisms that should be

considered in more detail, and which formed a focus of the

present reseach. One of these is the role of the premar-

tensitic tweed structure. The other is the possible

9



importance of the FCC-to-FCT transformation as a result of

stress-induction under vibrational conditions.

3. Tweed Structure

The term "tweed" is a generic term for a particular

sort of diffraction contrast in TEM images. This typically

consists of irregular lines of contrast lying approximately

along traces of (110) planes of a cubic parent phase, form-

ing a kind of cross-hatched pattern. The lines of contrast

obey extinction rules which are consistent with them being

due to <110> shear distortions of the (110) planes [Refs.

26,27].

There are numerous systems in which tweed microstruc-

tures are observed, and a variety of origins of the shear

distortions which are one of the two basic conditions that

must be satisfied for this type of contrast to develope.

The conditions are:

1. A sgurce of finely distributed centers of asymmetric
strain.

2. An elastically anisotropic matrix phase.

In different systems the strain centers may be:

* G-P zones [Ref. 26].

* Fine precipitates [Ref. 28].

* Ordered domains [Ref. 29].

* Domains in which there is an incipient lattice tran-
sition which distorts the lattice [Ref. 30].

For many cubic lattices, the existence of certain soft

elastic constants often provides a matrix phase which is

particularly susceptible to shear distortions of the type S

(110)<110> (Ref. 31]. In order to excite this distortion,

based on the <110> transverse phonon mode, the straining

centers distributed in the matrix must be asymmetric. If

they are symmetric, they are more likely to excite the

typical soft <100> longitudinal mode, the distortions of

which lead to (100) contrast traces rather than the typical

(110) contrast traces of a true tweed microstructure [Ref.

32]. S

10.p



The "sharpness" of a tweed microstructure, that is

to say the degree of alignment and contrast, is therefore

dependent on the distribution, the nature and the magnitude

of the strain centers, as well as the degree of anisotropy

of the matrix phase. If any of these factors is deficient

(i.e. not enough strain centers, not enough asymmetric

distortion provided by each strain center, or insufficient

elastic anisotropy of the matrix), the typical (110) aligned

tweed contrast will not be observed. In these "weak" cases

the image will simply present a "mottled" contrast. There-

fore, many "tweedy" alloys show a variation in the distinc-

tion of the tweed contrast as the distribution and strength

of the strain centers changes, for example, with aging

[Ref. 26], or upon cooling toward a temperature range of

lattice instability [Ref. 30].

Cu-Mn alloys have been previously reported to dis-

play tweed contrast microstructures under certain contitions

of heat treatment and observation temperature [Refs.

15,16,23,33,34]. The present work with the 53Cu-45Mn-2AI

alloy provided a unique situation with regard to the develo-

pment of the tweed contrast, in that the response of the

lattice could be controlled quite closely by the aging

treatment. Also, subsequent changes on cooling pertained to

just a certain proportion of the microstructure, namely that

proportion which had achieved a composition during aging

which was sufficiently rich in Mn to enter a range of

lattice instability upon cooling to room temperature.

C. STATEMENT OF THE PROBLEM AND HYPOTHESES

The central problem is that in spite of the mass of

reseach that has been conducted on the Cu-Mn alloy system,

the exact mechanisms that cause high damping and/or tweed

contrast in aged, low Mn based, Cu-Mn alloys are unknown.

As a result, no one knows how to optimize properties by

alloying and heat treatment for the development and main-

tenance of high damping.

11
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Although the exact reasons for the known effects of

time, cycling, deformation and temperature have not been

determined, there are several working hypotheses which can

be stated as a starting point to address the problem.

1. Hypothesis One

The tweed contrast microstructure that is observed

in certain aged Cu-Mn alloys is due to either:

a. Distortion caused by the creation of a disper-
sion of Mn-enriched regions in a Cu-rich matrix;
or

b. Distortion .ue to the FCC-to-FCT transformation
occuring within the Mn-enriched reqions when
they are cooled below the local Nee. tempera-
ture.

Question: Which, if either, of these mechanisms is

operative?

2. Hypothesis Two

Based on the fact that quite high damping can be

developed in aged Cu-Mn alloys, the mechanism of high damp-

ing in aged Cu-Mn alloys must be associated with one or more

of the following:

a. Stress-induced transformation and twinning (FCC-
to-FCT).

b. Stress-induced movement of the FCT:FCT twin
boundaries.

c. Some sort of subtle fine-scale response within a
tweed microstructure.

Question: Which mechanisms provide high damping in

this alloy or can be eliminated from hypothesis two?

3. Hypothesis Three

In any case, damping is a function of prior heat

treatment (i.e., aging time and temperature). In general

terms, this must be because either:

a. Some critical feature is developed in the micro-
structure; or

b. The ability to operate a critical mechanism is
optimized.

Question: Can detailed microstructural observations

point out the key feature of the mechanism?

12



4. Hypothesis Four

In specific terms, creation of a "responsive" mater-

ial must be linked in some way to optimization of the

microstructure, and this must be keyed to the role of the

Mn-enriched regions created during aging. These may play

one of the following roles:

a. To trigger the formation of FCT plates upon
cooling after the aging treatment.

b. To trigger the formation of FCT plates when the
materiaI is subjected to (cyclic) stresses.

c. Or the Mn-enriched regions thepselves, or
regions nearby, absorb the vibrational energy
locally by some unknown mechanism.

Question: Is there observable evidence which may

help to sort out the role of the Mn-enriched regions in the

damping mechanism?

5. Hypothesis Five

Because it is known from previous reports that high

damping is not necessarily stable in aged Cu-Mn-based al-

loys, microstructural optimization by aging must be a

delicate and subtle matter, and probably very fine scale.

Question: Will the apparent subtlety and fine scale

of certain aspects of the microstructural mechanism allow

visual evidence to be collected?

6. Hypothesis Six

In this particular high damping alloy, there seems

to be a unique combination of conditioning requirements (for

the high damping) which involve both a replacive phase

transformation step (involving a critical combination of

aging time and temperature) and a displacive step (involving

the operative transformation temperature upon quenching).

The aging step apparently has to do with balancing the

competitive replacive phase transformations (i.e., equi-

librium a-Mn phase formation, spinodal decomposition, and

coarsening).
Question: How do the kinetics of the replacive

phase transformations interact?

13
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7. Hypothesis Seven

The effectiveness of the displacive step is keyed
to: b

a. Prior heat treatment.

b. The temperature to which the material is
quenched.

c. The percentage of the microstructure that is
transformed from FCC-to-FCT.

d. The ability of the Cu-rich regions to coopera-
tively respond to shear.

Question: Can visual evidence be obtained to con-
firm the displacive response?

D. OBJECTIVE

The purpose of this research was to use transmission
electron microscopy to study the details of microstructural
changes which occur upon aging the 53Cu-45Mn-2Al alloy and
provide answers, insights or other information relevant to
answering the questions posed by the above hypotheses.

S

S
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II. EXPERIMENTAL PROCEDURES

The alloy examined was provided by Olin Metal Research

Laboratories in the form of 25mm thick plate. The alloy

composition was confirmed by Anamet Laboratories, Berkley,

California to be:

Cu Mn Al Zn Si Fe Cr Remain
w/o 53.1 44.8 1.61 0.1 0.08 0.06 0.05 0.2

Discs of 0.5mm thickness were sliced from 3mm diameter

rods of the material with a low-speed diamond wafering saw.

The discs were then hand sanded to a thickness of about

0.25mm. These specimens were solution heat treated at 800 C

for 2 hours in evacuated quartz tubes and water quenched.

Subsequently, specimens were aged at 400 C for various times

and water quenched once again. In order to prevent possible

room temperature aging [Refs. 23,35], specimens were stored

in a freezer at -22 C after each heat treatment stage, and

were not removed until it was time to prepare TEM specimens.

Thin foils were prepared by a careful two stage process.

Following aging, each disc was lightly sanded to remove any

oxide layer that may have formed. The disc were then

dimpled in a lollipop holder by jet electropolishing with a

solution of 50% H3 PO4 and 50% H20 at room temperature and a

current of about 580ma. Final thinning to perforation was

accomplished by holding the specimen with platinum tipped

tweezers and static electropolishing in a magnetically

stirred solution of H3PO4 saturated with Cr03 at 8v to 12v

and 20 C to 30 C. All thin foils were observed immediately

after electropolishing. Observation was carried out using a

JEOL-120CX transmission electron microscopy operated at

120kv. Further information on the procedures and equipment

set up used for preparation of thin foils is contained in

Appendix A.

15
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III. RESULTS AND DISCUSSION

For relatively short aging times (for example, less than

4 hours at 400 C), "mottled" contrast is observed in samples

subsequently quenched to room temperature, as seen in Figure

3.1. The fact that tweed contrast is not displayed indi-

cates that the conditions for tweed [Ref. 26] have not (yet)

been satisfied. That is, there are either not enough points

Figure 3.1 Mottled contrast in sample aged hrs.
at 400 C. .right field image with g=002
Beam direction near <100>.

of asymmetric strain dispersed in the microstructure, and/or

the degree of asymmetric strain provided by each point is

not sufficient. At an aging temperature of 400 C, the

present alloy composition probably places the alloy inside

the Cu-rich side of the miscibility gap. Aging at this

temperature would therefore be expected to produce a disper-

sion of FCC Mn-enriched clusters in an FCC Cu-rich matrix.

The development of such a dispersion may in itself

16
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constitute the array of strain centers required to perturb

the matrix into a tweed contrast, but if the clusters

remained FCC, it is likely that the distortion would be

isotropic, and aligned contrast traces, if they developed,

would be {00), not (110). If, however, it is assumed that

the potential source of asymmetric straining points is the

distortion of the incipient FCC-to-FCT lattice transition

occurring within these Mn-enriched regions (such a distor-
tion would constitute the asymmetric straining points

required for a (110) tweed contrast), then it is apparent

that at these early times the phase separation in the FCC

solid solution has not yet produced sufficient numbers of

Mn-enriched regions or that perhaps these regions have not

yet achieved the degree of Mn enrichment required to undergo

a tetragonal distortion upon cooling to room temperature.

Aligned (110) tweed contrast was observed in all samples

aged 4 hours or longer at 400 C. An example is presented in

Figure 3.2. The image contrast has all the typical

Figure 3.2 Tweed contrast on sample ageo 4 hrs
at 400 C. Dark field image with g=113.
Beam direction near <110>.
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characteristics of tweed which have been outlined by Tanner

[Ref. 26] and by Robertson and Wayman [Ref. 27]. For

example the expected image extinctions are observed: a

given set of the near-parallel striations within the tweed

becomes invisible if the operating g-vector is perpendicular

to the trace direction. Also, the observed spacing of the

striations is a sensitive function of foil orientation.

Very slight tilting, while maintaining the same operating

reflection in a two beam condition, can significantly change

the apparent spacing of the striations. The observed spac-

ing is also a function of the degree of deviation from the

Bragg condition, as observation of the tweed near a bend

contour reveals, and of the effective extinction distance.

The effect on diffraction contrast of different g-vectors is

shown in Figure 3.3; in these two images, the FCC annealing

twin boundary may be used as a marker. While the analysis

has not been as thorough as that of Robertson and Wayman,

,a.

Figure 3.3 Area in sample aged 10 hrs. at 400 C, imaged
in bright field with two different near two
beam conditions; for both images the beam
direction is near <110>; (a) g=002, (b) g=210.

18



the observations would seem to agree in every respect with

the "rules" which they outline for tweed contrast micro-

structures.

As aging was extended to longer times an enhancement of

the aligned contrast was observed, taking the form of bands

of darker contrast, as seen in Figure 3.4. This sort of

contrast, which is not uniform over the thin foil sample,

begins to be noticed for aging times of 8 hours or more at

400 C. This appears to be similar to observations made by

Shimizu and coworkers (Ref. 34] during cooling of a Mn-rich

alloy (Mn-26 atomic % Cu). The present observation indi-

cates that even in the composition-segregated microstructure

of the aged alloy, an increasing lattice instability is

reflected by contrast which extends across both Mn-enriched

and Mn-poor regions. These bands may be interpreted as

regions in which the strain of the incipient FCC-to-FCT

lattice transformation is enhanced, eventually to lead to

Figure 3.4 Banded tweed contrast in samplq
aged 8 hrs at 400 C. Bright field
image. Beam direction near <110>.
(Photo by Dr. M. H. Wu)
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the development of definite FCT lamellae [Ref. 34]. These

"tweed bands" obey the same extinction rules as the set of

tweed striations to which they are parallel, that is, they

become invisible when the operating g-vector is perpen-

dicular to the trace direction [Ref. 36]. This is consis-

tent with the general rules for tweed contrast outlined by

Robertson and Wayman [Ref. 27], and indicates that the

source of the banded contrast is strain of the same sense as

that which creates the general tweed contrast. This leads

to the conclusion that the lattice instability is becoming

more pronounced.

Another observation with increasing aging is a change

from stress-induced slip to stress-induced lattice transfor-

mation. At early aging times, occasional stress concen-

tration points in the form of notches at the edge of the

thin foil perforation, were observed to induce slip bands in

the FCC matrix phase, as seen in Figure 3.5a. This

Figure 3.5 (a) Slip trace i lame a ed 2hrs at 400 C.
Bright field; g=l13; Beam direction near <110>
b) Twins in sample aged 16 hrs at 400 C.

ark field; g=020, Beam direction near <100>.
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indicates that the FCC phase at this point is relatively

stable, not prone to stress-induced lattice transformation. V

At longer aging times, say 14 hrs, stacks of parallel twins

begin to form, as seen in Figure 3.5b. The ability to

produce these features also appears to reach a maximum as

aging proceeds, for example around 16 to 22 hours for aging

at 400 C, which happens to correspond to the condition for

maximum damping capacity in this alloy [Ref. 3,36]. These

static twins represent a further stage of lattice instabil-

ity of the aged FCC matrix phase. Vintaykin and coworkers

[Ref. 37] have quantified the critical shear stresses for

slip and twinning in certain binary alloys. Their findings

may be interpreted as indicating that the formation of the

twinned FCT condition, that is the quasi-martensitic state,

reflects a relative decrease in resistance to twinning

relative to slip, which is consistent with our observations

on the present aged alloy.

In the course of examination of the tweed microstructure

over a range of aging conditions, a unique and remarkable

observation was made, one which has not previously been

reported in connection with Cu-Mn or any other tweedy alloy.

It was noticed that certain tiny areas within the tweed

contrast were not completely static. Rather, as the tweed

was observed on the viewing screen at sufficient magnifica-

tion (say 40,000X or so), certain specific points within it

were observed to "flicker". This effect was not observed in

samples at early aging times, when the structure displayed

simply a "mottled" contrast, but only after the aligned

tweed traces became defined. ".

The "flickering" effect consists of spatially consistent

and repetitive contrast variations, that is, only certain

points flicker, and the contrast variation is always very

much the same in nature (although the frequency is not

constant). The regions that flicker are on the scale of the

tweed spacing, around 10 to 20 nm. Upon close examination, 0
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it is apparent that the contrast variations are not of an

"on-off" nature, but rather involve short movements or

rotations of lines of contrast on about this scale, as seen

in Figure 3.6. As there are a great many of these regions

active on the viewing screen at any one time, it is not easy

to make a complete quantitative characterization of the

activity. It also presents certain problems in photographic

recording by the usual timed exposure methods, but videotape

recordings have been made. The most successful method for

isolating the sites and the character of the contrast shifts

has been the use of weak beam dark field imaging techniques,

as exemplified by Figure 3.6a, where a very specific geomet-

ric form can be seen, which includes a distict V-shaped

feature.

It must be emphasized that the dynamic nature of the

flickering image has quite a different character than the

phenomenon which has been termed "shimmering" in various

a b

I. I. M.

I: I~
11o. Z b. Ic

40 nm

k k

Figure 3.6 (a) Flickering regions, aged 10 hrs.at 400 C.
Weak Beam; g=222. Beam direction near <110>.
(b) Schematic of a variety of flickering
morphologies which are observed.
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alloy systems [Refs. 38,39,40]. A detailed model for the

origin of this unusual effect has not yet been developed,

but it is apparent that the underlying cause of the contrast

variation is a subtle degree of lattice distortion in quite

small regions of the microstructure, these presumably being

the Mn-enriched regions resulting from the phase separation.

The initial impression is that the flickering contrast is a

manifestation of quite small sections of crystal, probably

less than lonm in size, flipping a tetragonal distortion

from one c-axis orientation to another. This would be

consistent with the Mn-enriched regions having entered a

pre-transformation range wherein the lattice begins to mimic

the incipient FCC-to-FCT quasi-martensitic transformation.

This is a notion which is in accordance with recent ideas,

such as presented by Barsch [Ref. 41], Krumhansl [Ref. 42],

Tanner [Ref. 43] and others, regarding the very common

development of incommensurate lattice structures in a "pre-

martensitic" temperature range, creating lattice distortions

which effectively anticipate the martensitic transformation

which may follow [Ref. 30].

The only previous report found of a dynamic TEM image

contrast effect similar to the present observations was in

connection with the creation and annihilation of omega

domains in a Ti-Mo alloy [Ref. 44]. For Cu-Mn alloys,

evidence does exist that the phonon spectra is appropriate

for the display of pre-martensitic effects of this kind

[Ref. 45]. It is therefore proposed that the flickering

contrast effect reported here is a manifestation of the S

incipient FCC-to-FCT lattice transition which occurs in

quite small regions of appropriate composition in the aged

microstructure. It would also seem that in view of the

present observations, it may be unreasonable to rule out the

possiblity that in certain pre-martensitic alloys the

phenomenon of "shimmering" is simply a denser concentration

of the uniquely localized (because of the composition

23 w
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variations in the parent phase) distortional events that

here are termed "flickering".

The flickering activity varies systematically with

aging, and there are a number of indications that coupling

can occur between neighboring regions of distortion, thus

progressing another step along the path toward FCT marten-

site. One of these observations is that at relatively short

aging times (4 to 8 hours at 400 C) the localized flickers

often erupt into linear "flashes" along one of the (110)

traces in the tweed, with a length of perhaps 10 to 20 tweed

spacings (some 100's of nm). These miniature plate-like

features repeatedly form and revert. If it is assumed that

this sort of event originates in one or more Mn-enriched

regions, then it is apparent that the lattice transition,

once it has initiated, is able to propagate across a dis-

tance which must be longer than the wavelength of the com-

position modulation. This may be possible if at early times

the dispersion of Mn-enriched regions consist of small but

quite closely spaced regions, allowing a coupling of the

distortions which develop in each of them. This is consis-

tent with x-ray diffraction result reported by Vintaykin and

coworkers [Ref. 46) for aged Cu-Mn-Ge alloys, which indi-

cated that there is a modulation of the FCT c-parameter

corresponding to a composition modulation in the parent

phase.

It is also noticed that at longer aging time (greater

than about 8 hours), when the dispersion of the Mn-enriched

regions is known by neutron studies to coarsen rapidly

[Ref. 47), flicker sites become confined to a size of about

20 to 40nm; the linear "flashes" into and out of the small

(110) plates are not seen at all. This suggests that the

lattice distortion of a given region is not able to trigger

a neighboring region, at least not on an obviously coopera-

tive manner, unless the unstable regions are close enough

together.

24
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In the present study, a static indication of cooperative

interaction between the distortional centers which underlie

the tweed contrast was previously discussed. This is the

aligned contrast taking the form of bands of darker contrast

seen in Figure 3.4. It therefore seems that the general

sequence of observed morphologies as the lattice instability

becomes increasingly manifested is: "mottled", "tweed",

"tweed bands", and finally FCT twins. The flickering

activity apparently reaches a peak during the tweedy stages.

A complicating factor in the aging of these alloys is

that phase separation in the FCC solid solution within the

miscibility gap is inherently in kinetic competition with

the long-range diffusional reaction to form the equilibrium

a-Mn phase. This essentially pure Mn phase was observed to

form as particles which are quite large relative to the

tweed spacing. When this occurs, the a-Mn particles may be

expected to naturally drain off Mn from the rest of the

microstructure, leading to a decrease in the amplitude of

any fluctuation in Mn composition. This would then in turn s
be reflected in a lesser degree of lattice instability, that

is, a lesser tendency for the FCC-to-FCT transition, as well

as a decrease in the demonstration of any possible precursor

events to it, such as flickering.

At an aging temperature of 400 C, the 53Cu-45Mn-2AI

alloy was indeed in the process of forming observable

amounts of a-Mn over the very range of aging time (8 to 24

hours) where a tweed contrast microstructure was becoming

more defined, a distict tendency to form stress-induced '

twins was being demonstrated, and the damping capacity was

rising to a maximum value. Therefore, an attempt was made

to produce an aged condition in which the microstructure

demonstrates a tweed contrast, but contains few, if any, a-

Mn particles. This was achieved, for example, for samples

aged 10 hours at 450 C, and it is revealing to compare the

microstructure of this condition, shown in Figures 3.7 and
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3.8, as well as the flickering activity, with microstruc-

tures in which a-Mn particles are present and apparently

acting as Mn sinks. P

One feature of the tweed microstructure seen in

Figure 3.7 which is different than, say, that of Figure 3.2,

is a less defined pattern of (110) tweed traces. Close

examination of Figure 3.8, reveals that is because the

features underlying (and causing) the tweed contrast are

somewhat larger and not so finely dispersed. The most vivid

features seen in Figure 3.8 are the small sets of zig-zag

patterns. These are localized, presumably to the most Mn-

enriched regions, and the most distinct groups of this sort

were not observed to be flickering. It is therefore assumed

that they represent static groups of self-accommodating FCT

units. They are very reminiscent in form, but much smaller

in size, to the type of self-accommodating martensite plate

groups which are well-known to form for many thermoelastic

martensites [Ref. 48]. The V-shapes within these groups

seem to be pointing along one or the other of the two

obvious (110) tweed traces in this <100> beam direction

image. The obvious indication is that the habit plane

traces of the V-shaped crystals in these zig-zag groups are

clustered fairly closely around one of the (110) parent

phase planes, and in fact seem to be symmetrically disposed

with respect to these parent planes.

Surrounding these zig-zag groups in the tweed contrast

microstructure were numerous strongly flickering regions.

The contrast variation in a given region exhibited a consis-

tent pattern which often consisted of abrupt rotations of

approximately 90 degrees of a small zig-zag group or a short

line (or pair of lines) of contrast. For example, the V-

points in a zig-zag group, or the alignment of the short

lines of contrast, would suddenly switch back and forth from

pointing along one or the other of the two orthogonal (110)

26
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Figure 3.7 Tweed microstructure ii samimeage.
10 hours at 450 C. Bright fediae
Beam direction near <10 >.

Figure 3.8 Static and flickering zig-zag grus0
in a sample~aged 10 hrs. at 450 C.
Beam direction near <100>.
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tweed traces. The static zig-zag groups and the strength

and distinction of the flickering contrast were not seen in

some other quite well-defined tweed microstructures. It is

concluded that this is due to the relative effects of the

competitive long-range diffusional nucleation and growth

kinetics of the formation of the equilibrium a-Mn phase.

Supporting evidence that the zig-zag groups are FCT

units can be obtained from the selected area diffraction

pattern (SADP) presented in Figure 3.9a. Splitting of the

002 and 022 diffraction spots indicate the presence of the

FCT phase. Although this SADP was taken from alloy aged for

10 hours at 450 C, Figure 3.9b shows evidence that the FCT

phase also exist in the alloy aged at 400 C, where these

same diffraction spot have elongated but not split. This is

consistent with the fact that the underlying microstructure

is not as well defined. The Cu-Mn alloy system is analagous

to the Fe-Pd, Fe-Pt and In-rich alloy systems [Refs.

49,50,51] and it has been shown by previous workers

S

Figure 3.9 (a) SADP from sample aged 10 hrs. at 450 C.

b SADP from sample aged 12 hrs. at 400 C. S
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[Refs. 12,21,23] that the lattice parameter varies as a

function of temperature. That is, the degree of tetra-

gonality increases gradually with decreasing temperature at

a given composition. In the present alloy the composition

most likely varies from Mn-enriched region to Mn-enriched

region, although there is an average composition and a

limiting composition which all regions are trying to reach.

Since the Neel temperature and FCC-to-FCT transition temper-

ature are therefore different in each region, it is logical

to assume that there is also a variation of tetragonality

within the regions, hence the elongated diffraction spot.

As more and more Mn-enriched regions reach the limiting

composition, then the tetragonality of the structure

approaches a limiting value and the diffraction spot splits.

The comparison between the microstructures aged at 400 C

and 450 C leads to the proposal that the formation of the

equilibrim phase a-Mn is in some way associated with the

decrease in damping which occurs upon extended aging at

temperatures within the misciblility gap. Two separate

processes are believed to contribute to this effect: (1) the

draining of Mn from the Mn-enriched regions as the a-Mn

forms and, (2) interference with the formation and propaga-

tion of the FCT microstructure. It is not clear at this

point whether the a-Mn forms within the Mn-enriched regions

or on the boundaries of these regions, or at both types of

locations.
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IV. CONCLUSIONS

It has been shown that tweed contrast microstructure is

observed after the alloy is aged for about 4 hours at 400 C.

It is most likely that this contrast is due to the FCC-to-

FCT transformation occuring within the Mn-enriched regions

as indicated by a change from stress-induced slip to stress-

induced transformation, evidence of FCT microstructure from

the selected area diffraction patterns and the flickering

phenomenon.

Damping is most likely caused by stress-induced trans-

formation and twinning and stress-induced movement of twin

boundaries. It is also possible that damping is associated

with the flickering phenomenon, as the lattice cycles back

and forth between different c-axes. Although these mechan-

isms have been observed, there is insufficient data to

positively rank their relative importance. The impression

is that the stress-induced phase transformation, which seems

to be most readily accomplished around 14-16 hours aging

time, is most likely of prime importance. Since a rela-

tively large increase in damping is achieved at just about

these aging times, other mechanisms may be of lesser impor-

tance.

The flickering phenomenon appears to be a prime example

of a premartensitic effect where the parent phase (in this

case FCC Mn-enriched regions) prepares itself by developing

periodic, incommensurate displacement patterns that mimic

the new product phase structure (in this case twinned FCT).

Finally, based upon the preceding discussion, the

following aging sequence for this alloy is proposed:

a. Nucleation of Mn-enriched regions occurs very quickly

(approximately within the first 10 minutes of aging
time) [Ref. 47].
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b. For times less than about 4 hours, the Mn-enriched

regions grow in size. During this period, there are

either not enough regions to produce the strain neces-

sary for tweed microstructure or the regions have not

reached sufficient Mn-enrichment to support transition

to FCT.

c. For times greater than about 4 hours but less than

about 8 hours, some of the Mn-enriched regions are in

a premartensitic condition and form an unstable FCT.

The spacing between regions is still relatively close,

such that a Mn-enriched region can "trigger" a cooper-

ative transformation with several other Mn-enriched k
regions.

d. For times of about 8 hours or longer, a coarsening

process has reduced the number of Mn-enriched regions

and increased their average separation distance such

that an obvious cooperative transformation can no

longer take place.

e. For times of about 14 hours or longer, some of the Mn-

enriched regions have attained a Mn-enrichment such

that the localized Neel temperature is above room

temperature and these regions can form a stable FCT

phase. The alloy is prone to stess-induced transfor-

mation for aging times from 14 to about 22 hours:

these are the aging times where the highest damping

occurs.

f. Beyond 22 hours, the damping decreases. This appears

to be the point where formation of the equilibrium

a-Mn begins to drain Mn from the Mn-enriched regions

and possibly interfere physically with the damping

mechanisms.
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V. RECOMMENDATIONS FOR FURTHER STUDY

The following recommendations for further research are

provided:

a. The flickering phenomenon needs further investigation.

Research using a heating and cooling stage on the TEM

will aid in further characterizing this feature. This

phenomenon appears to provide a rare opportunity to

look further into premartensitic effects and in par-

ticular movement of the lattice. This research may

require the use of HREM.

b. Further studies involving other heat treatments would

be benificial. For example, a study in which the

alloy is aged for 10 hours and the temperature is

varied by 10 C to 20 C for each heat treatment over a

range from 350 C to 600 C could be conducted and

damping could be correlated with the microstructural

changes.

c. Additional investigation of room temperature aging is

required. All previous research has been done on

beams that have been optimally aged to produce peak

damping. Question: what are the characteristics of

material that has been, for example, underaged, but

that still provides usable damping (i.e., 20-30%)?

d. Studies on the effects of further alloying (e.g., Ga,

Ge) on damping and room temperature aging should be

conducted.

e. An investigation into the ccrrosion characteristics

and methods of protection )f the alloy should be

conducted. Question: can this alloy be cathodically

protected without adverse effects to other components

within a system?
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APPENDIX A-p

ELECTROPOLISHING 53CU45MN2AL ALLOY

The highly different electrochemical potentials for Cu,

Mn and Al (-0.521v, +l.18v and +1.66v respectively) make

electropolishing of this alloy difficult at best. The

aluminum has been specifically added to the alloy to produce

a corrosion inhibiting surface layer. The difficulty in

electropolishing increases with alloy aging time as a result

of forming the Cu-rich and Mn-rich areas as previously

discussed and of precipitation of a-Mn particles. Pre-

ferential etching at grain boundaries and particles is a

problem with the electrolyte used, but does not prevent

getting good thin foils for aging times less than 28 hours.

Thin foils were not obtained for samples aged 64 hours.

Many variables influence the results in electropolish-

ing, including the following [Ref. 52: p. 119]:

* Surface area of the specimen.

* Orientation of sample and cathode.

* Choice of cathode material.

* Anode to cathode spacing.

* Electrolyte age and temperature.

k Flow or stirring rate.

* Current density and voltage.

* Time.

* Method of removing the specimen from electrolyte. Ud

* Washing procedures.

All of these variables must be closely controlled and logged

for future reproducibility. Experience has shown that even

under the best circumstances, the success rate for good thin

foil production on the aged alloy may be less than 30%.

Samples were initially jet polished by the double jet A

technique using a Tenupol-2. Struers Metalog [Ref. 53]
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provides a good discussion of this technique. Electro-

polishing was accomplished immediately following jet polish-

ing. The equipment set up was as shown in Figure A.1.

CATHODIC LEAD--.,,"-AOICLA

ALLIGTOR LIPSPLATINUM TIPPED TWEEZERS

ELECTROLYTE 3 mm DISC SPECIMEN
- ~BEAKER -- ,

VIEWING
POSITION

STAINLESS STEELBA
STRIP CATHODE "

MAGNETICSTRE DIRECTEDL[[oHTUE

STIRRERSOURCE

Figure A.1 Equipment setup for electropolishing.

The electrolyte solution was prepared by heating phos-

phoric acid to 40 C and adding Cr0 3 while stirring con-

tinuously. Cr03 particles were left in the bottom of the

mixture even after cooling to maintain saturation. This

solution was usually prepared several days in advance of

polishing.

The key to this procedure is in using tweezers (Pt-

tipped or stainless steel) to hold the specimen. The com-

bination of alloy, electrolyte and stir rate lead to the

generation of many bubbles and a lollipop holder is ineffec-

tive under these conditions.
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The detailed procedures used were as follows:
1. Set up the equipment as shown in Fiqure A.1. The

stainless steel cathode is placed near the bottom of
the beaker with a tab above the beaker edge to connect
as cathode.

2. Fill the beaker about two thirds full of electrolyte.

3. Fill a second beaker with distilled water for washing
the TEM specimen after perforation.

4. Fll two petrie dishes with acet9ne and one petrie
dish with methanol for the final rinse. Upon perfora-
tion, wash the TEM specimens as follows:

a. Upon removal from the electrolyte, first wash
the specimen in distilled water.

b. Place the specimen in the first acetone bath for
one minute.

c. Next, place the specimen in the second acetone bath
for one minute.

d. Finally, rinse the specimen in methanol for one
minute, and place on blotter paper to dry.

5. Using the tweezers,. grip the specimnen on an edge not
jet polished and cinch with a plastic grip. Clip the
anode lead to the top of the tweezers. Although the
voltages used are low, rubber gloves should be used
and all other electrical safety precautions followed.

6. Turn on the magnetic stirrer. A setting of 7 to 8
was used on a scale of 10.

7. Turn on the light so that it can be seen at some point
to the side of the whirlpool and above the cathode.

8. Turn on the power supply and adjust the voltage as
necessary. See Table A.l.

9. Place the tweezers in the solution with the TEM
specimen in the light path and out of the whirlpool.
Too high a stirrer setting creates too many bubbles
and too low a setting causes too long a time before
the specimen is perforated. Do not touch cathode with
the specimen or the tweezers.

10. Pull the specimen out of the solution as soon as
any .light. is seen through the specimen. Wash the
specimen in the distilled water, disconnect the anode
lead and complete the rinses. Place on the blotter
paper to dry.

Adjustment of time, temperature, voltage/current or any of

the other variables may be necessary to achieve good

results.
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TABLE A.l

CONDITIONS USED FOR STATIC ELECTROPOLISH

Aged Condition Voltage (v) Temperature (C)

Solution Treated 7, 8, 9, 10 23

400 C 1 hr 7, 8, 9 22

2 hr 8, 9, 10 24

3 hr 7.5, 8 24

4 hr 7.2, 8, 9 24

6 hr 9, 11 23

8 hr 8, 9, 10, 12 23

10 hr 11, 12 24

12 hr 12, 12+ 24

14 hr 11, 12 20

16 hr 10, 10.5 30
10, 10.5 25

18 hr 10, 11.5 23

20 hr 9, 10 30

22 hr 10, 10.5 25

28 hr 11, 12 24
32 hr 9, 10.5 25 .

450 C 10 hr 11, 12 26

350 C 10 hr 10, 11 30

3.
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APPENDIX B

ADDITIONAL EFFECTS OF INTEREST IN 53CU45MN2AL ALLOY

The following features were seen but have not been

studied in detail. They are provided here as an aid to

follow-on researchers.

(1) An interesting feature seen in the TEM photographs is

the formation of both straight and wavy string-like

contrast images as shown in Figure B.la. Enlargement

of the photograph, as shown in Figure B.lb, indicates

an image that seems to be composed of plate-like fea-

tures. The cause of this contrast is unknown and is

worthy of further investigation.

E ! .. .. ..

Figure B.l String-like contrast in sample aged
at 400 C for 4 hrs. (a) 68K (bl 194K 9

(2) Some SADP's have satellites and a ring pattern that

indicate the presence of an FCC structure with a

lattice parameter of 4.4A to 4.5A. This is most

likely MnO, which has a lattice parameter of 4.445

[Ref. 54].
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